Research

Reinforcement Learning

Reinforcement learning is a powerful framework for the training and evaluation of learning agents. My main focus in this field relates to model based RL in which the agent learns a model of the world in order to better act.

Evolutionary algorithms

Evolutionary algorithms can help to overcome the limits that are present in RL. Moreover, divergent search algorithms like Novelty Search or Quality Diversity methods can work as good exploration strategies in situations in which little to no reward is present and exploration is harder.

State representation Learning

Learning proper state representations is considered fundamental for the agents to learn in a robust and efficient way.